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Abstract

I describe an open-source R package, multimark, for estimation of survival

and abundance from capture–mark–recapture data consisting of multiple “nonin-

vasive” marks. Noninvasive marks include natural pelt or skin patterns, scars, and

genetic markers that enable individual identification in lieu of physical capture.

multimark provides a means for combining and jointly analyzing encounter

histories from multiple noninvasive sources that otherwise cannot be reliably

matched (e.g., left- and right-sided photographs of bilaterally asymmetrical indi-

viduals). The package is currently capable of fitting open population Cormack–
Jolly–Seber (CJS) and closed population abundance models with up to two mark

types using Bayesian Markov chain Monte Carlo (MCMC) methods.

multimark can also be used for Bayesian analyses of conventional capture–re-
capture data consisting of a single-mark type. Some package features include (1)

general model specification using formulas already familiar to most R users, (2)

ability to include temporal, behavioral, age, cohort, and individual heterogeneity

effects in detection and survival probabilities, (3) improved MCMC algorithm

that is computationally faster and more efficient than previously proposed meth-

ods, (4) Bayesian multimodel inference using reversible jump MCMC, and (5)

data simulation capabilities for power analyses and assessing model performance.

I demonstrate use of multimark using left- and right-sided encounter histories

for bobcats (Lynx rufus) collected from remote single-camera stations in southern

California. In this example, there is evidence of a behavioral effect (i.e., trap

“happy” response) that is otherwise indiscernible using conventional single-sided

analyses. The package will be most useful to ecologists seeking stronger inferences

by combining different sources of mark–recapture data that are difficult (or

impossible) to reliably reconcile, particularly with the sparse datasets typical of

rare or elusive species for which noninvasive sampling techniques are most

commonly employed. Addressing deficiencies in currently available software,

multimark also provides a user-friendly interface for performing Bayesian

multimodel inference using capture–recapture data consisting of a single conven-
tional mark or multiple noninvasive marks.

Introduction

Capture–recapture methods historically relied on the physi-

cal capture, marking, and recapturing of animals for esti-

mating population abundance and related demographic

parameters such as survival (e.g., Williams et al. 2002).

More recently, “noninvasive” capture–recapture sampling

techniques are becoming commonplace for monitoring

animal populations (e.g., Hammond 1990; Lukacs and

Burnham 2005; O’Connell et al. 2010). Noninvasive marks

can include natural pelt or skin patterns, scars, and genetic

markers that enable individual identification in the absence

of physical capture. Capture–recapture methods based on

noninvasive marks have been applied to diverse taxa,

including sharks (e.g., Holmberg et al. 2008), reptiles (e.g.,

Nair et al. 2012), ursids (e.g., Dreher et al. 2007), felids

(e.g., Karanth and Nichols 1998; Ruell et al. 2009), and

marine mammals (e.g., Hammond 1990; Wilson et al.

1999; Madon et al. 2011). While noninvasive capture–re-
capture methods have many advantages related to financial
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cost and animal welfare, they also pose new difficulties such

as animal misidentification (Wright et al. 2009; Yoshizaki

et al. 2009; Link et al. 2010; Morrison et al. 2011) and the

complexity of multiple types of marks (Corkrey et al. 2008;

Madon et al. 2011; Bonner and Holmberg 2013; McClin-

tock et al. 2013).

Multiple marks can arise from sighting or camera surveys

of species with natural mark patterns that are bilaterally

asymmetrical (e.g., cetaceans, felids) or from multiple

sources of noninvasive capture–recapture data being col-

lected concurrently (e.g., fecal DNA sampling and visual

surveys). With multiple marks, an encounter history is pro-

duced for each individual and mark type, but there is typi-

cally no reliable means to match them (unless each mark

type is simultaneously observed at least once for every

encountered individual). Because the number of unique

individuals encountered must be known for standard cap-

ture–recapture analyses, the typical approach is to conduct

separate analyses for each mark type and compare the

results (e.g., Wilson et al. 1999; Berrow et al. 2012; Nair

et al. 2012). However, given that sample sizes (and preci-

sion) may be considerably reduced, this is not as efficient as

conducting an integrated analysis utilizing encounter histo-

ries arising from all mark types (McClintock et al. 2013).

Additional costs of conducting separate analyses for each

mark type include a limited ability to explore models with

behavioral or cohort effects, and for capture–recapture
models that condition on first encounter, a forfeiting of

information from histories with the (apparent) first encoun-

ter occurring on the last sampling occasion. These limita-

tions can be particularly important for the sparse datasets

typical of rare and elusive populations for which noninva-

sive sampling techniques are most commonly employed.

Based on the latent multinomial model of Link et al.

(2010), Bonner and Holmberg (2013) and McClintock et al.

(2013) recently developed methods for performing inte-

grated analyses of capture–recapture data consisting of mul-

tiple noninvasive marks. However, to my knowledge, their

approaches have yet to be applied by practitioners. This is

certainly not due to a lack of appropriate data (e.g., Wilson

et al. 1999; Holmberg et al. 2008; Madon et al. 2011; Ber-

row et al. 2012; Nair et al. 2012) and is likely attributable to

the mathematical and computational complexity of the

models, as well as a lack of user-friendly software for imple-

menting them. Generalized software for performing Baye-

sian multimodel inference with capture–recapture data has

also been lacking, thereby leaving these procedures largely

inaccessible to nonstatisticians (e.g., Brooks et al. 2000;

Durban and Elston 2005; King and Brooks 2008; Royle

2008; McClintock et al. 2013). These software needs were

the motivation for multimark, an R (R Core Team 2013)

package for Bayesian analysis of capture–recapture data

consisting of multiple noninvasive marks.

After providing some additional background on

capture–recapture with multiple marks, I briefly describe

the models implemented in multimark. These currently

include open population Cormack–Jolly–Seber (CJS) and

closed population abundance models (e.g., Williams

et al. 2002) with up to two mark types. Although origi-

nally motivated by the challenges posed by multiple

noninvasive marks, multimark can also be used

for analyses of conventional capture–recapture data con-

sisting of a single-mark type. Using real and simulated

data for illustration, I provide an overview of the work-

flow for the package and a new analysis of left- and

right-sided encounter histories for bobcats (Lynx rufus)

collected from remote single-camera stations in southern

California. Additional information, including help files,

data, examples, and package usage, is available by

downloading the multimark package from CRAN

(http://cran.r-project.org) or github (https://github.com/

bmcclintock/multimark). This article describes

multimark version 1.3.0.

Description

Background

Capture–recapture data are typically represented by a col-

lection of encounter histories Y = {y1, y2, . . ., yn}, where
each element of yi = (yi,1, yi,2, . . ., yi,T) indicates whether

individual i was detected (yi,t = 1) or not detected
(yi,t = 0) on each of t = 1,. . .,T sampling occasions. Typi-
cal analyses then proceed by formulating a likelihood con-
ditional on the n unique individuals encountered (e.g.,
Williams et al. 2002). With two mark types, we instead
have ~Ym ¼ f~ym1

; ~ym2
; . . .; ~ymnm

g for m 2 {1,2}, where
each element of ~ymi

¼ ð~ymi;1
;~ymi;2

; . . .;~ymi;T
Þ indicates indi-

vidual i was detected ð~ymi;t
¼ mÞ or not detected

ð~ymi;t
¼ 0Þ, and nm is the number of unique individuals

encountered for mark type m. We focus on situations
where it is difficult (or impossible) to reliably match indi-
viduals from ~Y1 and ~Y2. In this case, although we know
n ≤ n1+n2, n is nevertheless unknown and standard cap-
ture–recapture analysis methods cannot be reliably used
for simultaneous inference using both sources of data.
Depending on the mark types and sampling design, it

may sometimes be possible to observe both marks simul-

taneously within a sampling occasion. In this case, some

of the encounter histories from ~Y1 and ~Y2 can be

matched to unique individuals with certainty. For exam-

ple, suppose images were collected during vessel-based

line transect surveys of surfacing whales, where mark type

1 corresponds to patch patterns on the left side and mark

type 2 corresponds to patterns on the right side. If an

individual happens to be photographed on both sides
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simultaneously on at least one sampling occasion, then

the true encounter history for this individual would be

known (i.e., left- and right-sided images could be

matched). This results in an additional set of nknown
observed encounter histories, ~Yknown ¼ f~yknown1 ;
~yknown2 ; . . .; ~yknownnknown

g, consisting of histories that are

known with certainty (Table 1).

In essence, multimark facilitates the joint analysis of

type 1 ð~Y1Þ, type 2 ð~Y2Þ, and known encounter histories

ð~YknownÞ, while accounting for uncertainty in the number

of unique individuals encountered using extensions of the

methodology proposed by Bonner and Holmberg (2013)

and McClintock et al. (2013). While the mathematical

and computational details are generally of little interest to

ecologists, multimark performs these operations in the

background and requires only simple data formatting and

model specification formulas familiar to most R users.

Models

multimark currently includes open population Corma-

ck–Jolly–Seber (CJS) and closed population abundance

models (e.g., Williams et al. 2002). These Bayesian

implementations are similar in spirit to the CJS

model of Royle (2008) and the abundance model of

King et al. (2015). Given the latent encounter histories

(Y) that generated the observed encounter histories

ð~Y1; ~Y2; ~YknownÞ, the likelihood for the CJS model with

two mark types is

½Yjp; d; a;/;Q� /
Yn
i¼1

YT
t¼Ciþ1

pi;t (1)

where yi,t=0 indicates a nondetection for individual i on

occasion t, yi,t = 1 indicates a type 1 encounter, yi,t = 2

indicates a type 2 encounter, yi,t = 3 indicates a nonsi-

multaneous type 1 and type 2 encounter, yi,t = 4 indi-

cates a simultaneous type 1 and type 2 encounter,

Ci 2 f1; . . .;Tg is the time of first capture for individ-

ual i, pi,t is the detection probability for individual i

during sampling occasion t, dm is the conditional prob-

ability of a type m encounter (given detection), a is the

conditional probability of a simultaneous type 1

and type 2 encounter (given both mark types detected),

/i,t�1 is the survival probability between times t�1 and

t, and qi,t is an indicator for whether individual i was

alive (qi,t = 1) or not (qi,t = 0) during sampling occa-

sion t. For example, with T = 3, we, have cell probabil-

ities pi ¼
QT

t¼Ciþ1 pi;t ¼ ð1� pi;3Þ/i;2qi;3 þ ð1� /i;2Þ
ð1� qi;3Þ for latent encounter history 020,

pi = pi,2d1/i,1pi,3d2/i,2 for latent encounter history 412,

pi = (1�pi,2)/i,1pi,3(1�d1�d2)(1�a)/i,2 for history 103,

and pi,3(1�d1�d2)a/i,2 for history 034.

For added flexibility, p and / are modeled using the

probit link function:

Uðpi;tÞ ¼ x
p
t
0
bp þ z

p
i

Uð/i;tÞ ¼ x/t
0
b/ þ z/i

where Φ() the cumulative distribution function of the

standard normal density, x
p
t and x/t are row t of the

design matrices for p and /, bp and b/ are the corre-

sponding regression coefficients, and z
p
i �Nð0; r2zpÞ and

z/i �Nð0; r2
z/
Þ are individual-level effects that, respec-

tively, allow for individual heterogeneity in detection and

survival probability. Thus, while exploring the feasible set

of latent encounter histories (Y), the parameters and

latent variables to be estimated by multimark include

bp, b/, d, a, Q, zp, z/, r2zp , and r2
z/
.

The probit link is implemented for CJS models in

multimark because it facilitates a Gibbs sampler in the

spirit of Albert and Chib (1993) and Laake et al. (2013).

The probit link is very similar to the logit link, but the

logit link has slightly fatter tails and is interpretable in

terms of log-odds. I note that this model reduces to that

of Laake et al. (2013) for conventional capture–recapture
data with a single-mark type when d1=1 and d2=0 for

yi;t 2 f0; 1g.
Similarly, the likelihood for the closed population

abundance model with two mark types is

pi;t ¼

ð1� pi;tÞ/i;t�1qi;t þ ð1� /i;t�1Þð1� qi;tÞ if yi;t ¼ 0 and qi;t�1 ¼ 1
pi;td1/i;t�1 if yi;t ¼ 1
pi;td2/i;t�1 if yi;t ¼ 2
pi;tð1� d1 � d2Þð1� aÞ/i;t�1 if yi;t ¼ 3
pi;tð1� d1 � d2Þa/i;t�1 if yi;t ¼ 4
1 otherwise

8>>>>>><
>>>>>>:
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½Y j p; d; a;N� / 1

ðp�Þn
Yn
i¼1

YT
t¼1

pi;t � Binomial ðn;N; p�Þ

(2)

pi;t ¼

1� pi;t
� �

if yi;t ¼ 0
pi;td1 if yi;t ¼ 1
pi;td2 if yi;t ¼ 2
pi;t 1� d1 � d2ð Þ 1� að Þ if yi;t ¼ 3
pi;t 1� d1 � d2ð Þa if yi;t ¼ 4
1 otherwise

8>>>>><
>>>>>:

where N is the population size, and p* is the probability

that a randomly selected individual is detected at

least once. For example, returning to Table 1 with T = 2,

we, for example, have cell probabilities

pi ¼
QT

t¼1 pi;t ¼ 1� pi;1
� �

pi;2d1 for latent encounter his-

tory 01, pi = pi,1d2(1�pi,2) for history 20,

pi = pi,1d2pi,2(1�d1�d2)(1�a) for history 23, and

pi = pi,1(1�d1�d2)api,2(1�d1�d2)(1�a) for history 43. As

before, this model reduces to that for conventional

capture–recapture data with a single-mark type when

d1 = 1 and d2 = 0 for yi;t 2 f0; 1g.
For closed population models, p is modeled using the

logit link function:

logitðpi;tÞ ¼ x
p
t
0
bp þ z

p
i

such that

p�¼1�
Z 1

�1

YT
t¼1

1� 1

1þexpð�ðxpt 0bpþzpÞÞ

 !
Nðzp;0;r2zpÞdzp

is the probability of being detected at least once after

accounting for individual heterogeneity in p (note that

p� ¼ 1�QT
t¼1 1� logit�1 x

p
t
0
bp

� �� �
when r2zp ¼ 0). The

parameters and latent variables to be estimated therefore

include bp, d, a, N, zp, and r2zp . Although a Gibbs sampler

has been proposed for closed population models using

the probit link and a complete data likelihood (McClin-

tock et al. 2014), this does not apply to the “semicom-

plete” data likelihood in Eq. 2 (hence the traditional logit

link is used). The primary utility of multimark is find-

ing the set of latent encounter histories that are feasible

given the observed encounter histories (sensu Link et al.

2010; Bonner and Holmberg 2013; McClintock et al.

2013, 2014). Given a feasible set of latent encounter histo-

ries (Y), fitting capture–recapture models such as Eqs. 1

or 2 is relatively straightforward.

Workflow

Multiple noninvasive marks

Data formatting

There are three types of multiple-mark data that can

be analyzed with multimark. These are the “never”,

“sometimes”, and “always” data types, and they are named

based on their respective probabilities of a simultaneous

type 1 and type 2 encounter (Table 2). An example of the

“never” data type is provided with multimark and

includes 23 left-sided ð~Y1Þ and 23 right-sided ð~Y2Þ encoun-
ter histories for bobcats (Lynx rufus) collected from remote

Table 1. Latent encounter histories y and the recorded histories

ð~y1; ~y2; ~yknownÞ they generate for T = 2 sampling occasions and two

mark types, where y=(y1,y2) for yt 2 f0; 1; 2; 3; 4g. Latent encounter
histories are indexed by j ¼ 1þPT

t¼1 yt5
T�t , where the encounter

types indicate nondetection (yt=0), type 1 encounter (yt=1), type 2

encounter (yt=2), nonsimultaneous type 1 and type 2 encounter

(yt=3), and simultaneous type 1 and type 2 encounter (yt=4). If simul-

taneous encounters are possible, these results in some y being com-

pletely observable (as indicated by ~yknown).

j y ~y1 ~y2 ~yknown

1 00 .. .. ..

2 01 01 .. ..

3 02 .. 02 ..

4 03 01 02 ..

5 04 .. .. 04

6 10 10 .. ..

7 11 11 .. ..

8 12 10 02 ..

9 13 11 02 ..

10 14 .. .. 14

11 20 .. 20 ..

12 21 01 20 ..

13 22 .. 22 ..

14 23 01 22 ..

15 24 .. .. 24

16 30 10 20 ..

17 31 11 20 ..

18 32 10 22 ..

19 33 11 22 ..

20 34 .. .. 34

21 40 .. .. 40

22 41 .. .. 41

23 42 .. .. 42

24 43 .. .. 43

25 44 .. .. 44

Table 2. Summary of three different types of multiple-mark data.

The data differ in terms of the latent encounter types (yt) that are

possible based on the conditional probability of a simultaneous type 1

and type 2 encounter, a = Pr(yt = 4|yt = 3 or yt = 4).

Data type yt Constraints

“never” {0, 1, 2, 3} a = 0

“sometimes” {0, 1, 2, 3, 4} 0 < a < 1

“always” {0, 1, 2, 4} a = 1
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single-camera stations in southern California over T = 8

sampling periods between July 2006 and January 2007

(McClintock et al. 2013; Alonso et al. 2015).

multimark expects observed encounter history data to

be a matrix with rows corresponding to individuals and

columns corresponding to sampling occasions. Because

the bobcat data were collected from single-camera sta-

tions, simultaneous left- and right-sided encounters were

not possible; hence, a = 0 and the rows consist of either

0’s and 1’s or 0’s and 2’s:

> library(multimark)

> data(bobcat)

> head(bobcat)

> tail(bobcat)

The ordering of the rows is unimportant; the package

automatically recognizes which histories belong to ~Y1, ~Y2,

and, if applicable, ~Yknown.

The multimark function processdata() performs all

additional data formatting. The basic inputs are the

matrix of observed encounter histories (Enc.Mat) and the

data type (data.type):

> bobcatsetup <� processdata(Enc.Mat=bobcat,

data.type=“never”)

This creates an object of class multimarksetup that

includes everything needed for model fitting and further

analysis. In particular, processdata() calculates all of the

necessary ingredients for identifying the feasible set of

latent encounter histories (for technical details, see Bonner

and Holmberg 2013; McClintock et al. 2013). There is also

a feature enabling designation of individual encounter his-

tories as known with certainty despite no simultaneous

type 1 and type 2 detections (i.e., yi,t6¼4 ∀ t), a situation

that can arise from a previous physical capture or concur-

rent telemetry study (e.g., McClintock et al. 2013).

Model fitting

The package currently includes functions multimarkCJS()

and multimarkClosed() for fitting CJS and closed

population models, respectively, with two mark types.

Use of these functions is perhaps best explained by exam-

ple. To fit a simple closed population model assuming

constant detection probability using the default settings:

> bobcat.dot <� multimarkClosed(mms=bobcatsetup,

mod.p= ~1)

Equivalently, Enc.Mat and data.type can be provided in

lieu of the mms argument. In this case, processdata() is

called from within multimarkClosed():

> bobcat.dot <� multimarkClosed(Enc.Mat=bobcat,

data.type=“never”,mod.p= ~1)

This creates a list, bobcat.dot, containing the

MCMC output for the model (bobcat.dot$mcmc).
The MCMC output is of class mcmc, which should be

familiar to users of the R package coda (Plummer et al.

2006):

> summary(bobcat.dot$mcmc)

Iterations = 2001:12000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each

variable, plus standard error of the mean:

occ1 occ2 occ3 occ4 occ5 occ6 occ7 occ8

ID2 0 0 0 0 0 1 1 0
ID3 0 0 1 0 1 0 0 0
ID4 0 0 0 0 1 0 0 0
ID6 1 0 0 0 0 0 0 0
ID7 0 0 1 0 0 0 0 1
ID8 0 1 0 0 0 0 0 0

occ1 occ2 occ3 occ4 occ5 occ6 occ7 occ8

ID49 0 0 2 0 0 0 0 0
ID50 0 0 2 0 0 0 0 0
ID51 0 0 0 2 0 0 0 0
ID52 0 0 0 0 2 0 0 0
ID53 0 0 0 0 0 2 0 0
ID54 0 0 0 0 0 0 2 0
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Here, we can see posterior summaries for the default

monitored parameters (bp, N, d1, d2). Based on the

effective sample sizes, it is clear that the default chain

length is inadequate for this example; a typical “rule of

thumb” is effective sample sizes >4000 for all quantities

of interest.

Other common models for detection probability can be

easily specified using linear model formulas for mod.p,

including shorthands for time variation (mod.p=˜time),

temporal trends (mod.p=˜Time), behavioral response to

first capture (mod.p=˜c), and individual heterogeneity

(mod.p=˜h). Additive or interaction terms can be included

(e.g., mod.p=˜time+c+h, mod.p=˜Time+I(Time^2),
mod.p=˜time*c). User-specified temporal covariates in

detection probability can also be used:

> dummy <� rnorm(ncol(bobcat))

# some fake temporal covariates

> bobcatsetup <� processdata(Enc.Mat=bobcat,

data.type=“never”,

covs=data.frame(cov1=dummy))

> bobcat.dummy_h <� multimarkClosed(mms=

bobcatsetup,

mod.p=�cov1+h,

parms=c(“pbeta”,“N”,“delta”,“sigma2_zp”))

The covs argument is a data frame used to enter dis-

crete- or continuous-valued temporal covariates, and

parms specifies the parameters to monitor.

There are currently two options for specifying models

for the conditional probabilities of type 1 and type 2

encounters (d), the default mod.delta=˜type (i.e.,

d1 6¼d2), and mod.delta=˜1 (i.e., d1=d2). The constraint

d1=d2 will often be reasonable when type 1 and type 2

encounters arise from a very similar process, such as

with left- and right-sided images (see Example) . How-

ever, when type 1 and type 2 encounters arise from very

different processes (e.g., fecal DNA and visual surveys),

then specifying d1 6¼d2 is likely a model deserving con-

sideration.

There are many additional arguments for specifying the

number (nchains) and length (iter) of chains, including

burn-in and adaptive periods. For potential improve-

ments in mixing, the number of “moves” used to update

the feasible set of latent encounter histories at each itera-

tion can be user specified (maxnumbasis; see Appendix

S1). The default priors are “uninformative,” but user-

specified priors can be used for each parameter. Initial

values can be automatically generated or user specified

for each parameter.

The function multimarkCJS() works in exactly the same

fashion, with the only notable difference being specifica-

tion of models for / (in addition to p and d). Although

CJS-specific data are not included with multimark, data

can be simulated using the simdataCJS() function (or

simdataClosed() for closed populations):

> CJSdata <- simdataCJS(N=100,noccas=7,

pbeta=�0.25,phibeta=1,delta_1=0.2,

delta_2=0.5,alpha=0.5,

sigma2_zphi=0.25,data.type=“sometimes”)

> Enc.Mat<� CJSdata$Enc.Mat

> head(Enc.Mat)

Mean SD Naive SE Timeseries SE

pbeta[(Intercept)] �1.3302 0.23847 0.0023847 0.012847
N 35.6166 5.20282 0.0520282 0.277289
delta_1 0.3949 0.07296 0.0007296 0.007221
delta_2 0.4112 0.07269 0.0007269 0.006086

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

pbeta[(Intercept)] �1.7987 �1.4982 �1.3330 �1.1614 �0.8783
N 28.0000 32.0000 35.0000 39.0000 48.0000
delta_1 0.2540 0.3444 0.3940 0.4457 0.5360
delta_2 0.2707 0.3605 0.4113 0.4611 0.5524

> coda::effectiveSize(bobcat.dot$mcmc)

pbeta[(Intercept)] N delta_1 delta_2

344.5661 352.0563 102.0897 142.6469
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> CJSsetup <- processdata(Enc.Mat=Enc.Mat,

data.type=“sometimes”)

> CJS.dot.h <- multimarkCJS(mms=CJSsetup,

mod.p=�1,mod.delta=�type,mod.phi=~h,

parms=c(“pbeta”,“delta”,“alpha”,“phibeta”,

“sigma2_zphi”),

nchains=2,iter=45000,burnin=5000)

> summary(CJS.dot.h$mcmc)

Iterations = 5001:45000

Thinning interval = 1

Number of chains = 2

Sample size per chain = 40000

1. Empirical mean and standard deviation for each

variable, plus standard error of the mean:

2. Quantiles for each variable:

An additional feature for multimarkCJS() is simple

specification of “age” and cohort effects for p

(mod.p=˜age and mod.p=˜cohort) and / (mod.phi=˜age
and mod.phi=˜cohort), which can be useful for investi-

gating structure related to time since first capture and

time of initial capture, respectively. These variables by

default include a level for each unique age or cohort,

but they can be binned to reduce the number of levels

using additional arguments.

Single-mark type

For conventional capture–recapture data consisting of a

single-mark type, encounter histories are formatted the

same way but now consist solely of 1’s (detections) and

0’s (nondetections). The package currently includes the

functions markCJS() and markClosed() for fitting con-

ventional CJS and closed population models, respec-

tively. These functions are essentially wrappers that

“trick” multimarkCJS() and multimarkClosed() to fit

models with a single-mark type. The functions

simdataCJS() and simdataClosed() can also be used to

simulate encounter history data with a single-mark type

by setting the arguments delta_1=1 and delta_2=0. For
example, to simulate CJS data and fit a model with con-

stant detection probability and individual heterogeneity

in survival:

> singleCJSdata <- simdataCJS(delta_1=1,delta_2=0,

pbeta=�0.25,phibeta=1,sigma2_zphi=0.25)

> Enc.Mat <- singleCJSdata$Enc.Mat

> singleCJS.dot.h <- markCJS(Enc.Mat=Enc.Mat,

mod.p=�1,mod.phi=�h,

parms=c(“pbeta”,“phibeta”,“sigma2_zphi”),

nchains=2,iter=45000,burnin=5000)

There are fewer arguments for markCJS() and

markClosed() because there is only one mark

type (e.g., the arguments mms and mod.delta are no

longer necessary), but the remaining arguments are

specified exactly as for multimarkCJS() and

multimarkClosed().

Mean SD Naive SE Timeseries SE

pbeta[(Intercept)] �0.23929 0.12483 0.0004413 0.0034456
phibeta[(Intercept)] 1.39411 0.30023 0.0010615 0.0123494
alpha 0.51730 0.11716 0.0004142 0.0026694
sigma2_zphi 0.04021 0.09187 0.0003248 0.0039210
delta_1 0.20576 0.04557 0.0001611 0.0010992
delta_2 0.59324 0.05317 0.0001880 0.0009821

2.5% 25% 50% 75% 97.5%

pbeta[(Intercept)] �0.471868 �0.326159 �0.24406 �0.15725 0.01808
phibeta[(Intercept)] 0.916923 1.186706 1.35644 1.55790 2.08917
alpha 0.295278 0.434658 0.51570 0.59789 0.74769
sigma2_zphi 0.002618 0.007179 0.01413 0.03391 0.26382
delta_1 0.122343 0.173677 0.20383 0.23541 0.30069
delta_2 0.486954 0.557618 0.59420 0.62968 0.69478

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1 0 0 0 0 0 0
[2,] 1 0 0 0 0 0 0
[3,] 0 0 1 0 0 0 0
[4,] 2 0 2 3 4 0 2
[5,] 4 1 0 0 0 0 0
[6,] 4 3 0 0 0 0 0
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Further analysis

While the coda package can be used to summarize,

plot, and assess convergence of MCMC samples from

markClosed(), multimarkClosed(), markCJS(), and

multimarkCJS(), several additional functions are available

for further analysis of model output. Because link func-

tions are used for p and /, the functions getprobsClosed()

and getprobsCJS() provide estimates on the real scale. For

example, we can compare the probabilities of capture (p)

and recapture (c) when there is a behavioral response to

first capture (i.e., mod.p=˜c):
> bobcat.c <� multimarkClosed(mms=bobcatsetup,

mod.p=�c)

> pc <� getprobsClosed(bobcat.c)

> summary(pc[,c("p1]","c[2]")])

Iterations = 2001:12000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each

variable, plus standard error of the mean:

Here, p[1] and c[2] refer to the probabilities of capture

and recapture at times t = 1 and t = 2, respectively.

Based on Barker and Link (2013), Bayesian multimodel

inference using reversible jump MCMC is implemented

through the functions markClosed(), multimarkClosed(),

markCJS(), andmultimarkCJS(). Using this approach, mod-

els are first run individually and a Gibbs sampler explores

the model space using the individual model MCMC output.

All that must be provided to the multimodel inference func-

tions is a list containing the output from at least two mod-

els. The models must have the same number and length of

MCMC chains, and all model parameters must be moni-

tored (this is accomplished by setting parms=“all”):
> bobcat.dot <- multimarkClosed(mms=bobcatsetup,

mod.p=�1,parms="all")

> bobcat.c <- multimarkClosed(mms=bobcatsetup,

mod.p=�c,parms="all")

> bobcat.time <- multimarkClosed(mms=bobcatsetup,

mod.p=�time,parms="all")

> bobcat.h <- multimarkClosed(mms=bobcatsetup,

mod.p=�h,parms="all")

> modlist <- list(mod1=bobcat.dot,mod2=bobcat.c,

mod3=bobcat.time,mod4=bobcat.h)

> bobcat.M <- multimodelClosed(modlist=modlist)

The list bobcat.M includes RJMCMC output

(bobcat.M$rjmcmc) for parameters common to all

models (which can be specified using the argument

monparms) and posterior model probabilities

(bobcat.M$pos.prob). Other arguments for

multimodelClosed() and multimodelCJS() include prior

model probabilities (modprior) and user-specified pro-

posal distributions for moving between models.

Example

I will now provide results from a new closed

population analysis of the bobcat data performed in

multimark. Previous analyses of these data include

McClintock et al. (2013), who performed an integrated

analysis but for a limited model set that did not

include behavioral or individual effects, and Alonso

et al. (2015), who performed standard single-sided anal-

yses that could not investigate behavioral responses to

first capture. Using multimark, it is possible to con-

duct a more complete analysis using both left- and

right-sided encounter histories that includes no effects,

temporal effects, behavioral effects, and individual

effects in detection probability. I also investigated two

models for d (d1 6¼d2 and d1=d2) because it is reason-

able to suspect that the conditional probabilities of left-

sided (type 1) and right-sided (type 2) encounters are

similar.

Mean SD Naive SE Timeseries SE

p[1] 0.137 0.05407 0.0005407 0.005286
c[2] 0.259 0.05148 0.0005148 0.002981

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

p[1] 0.0485 0.09735 0.1321 0.1716 0.2538
c[2] 0.1619 0.22273 0.2569 0.2931 0.3639
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Fitting all possible additive combinations yielded 16

models using the default “noninformative” priors for

multimarkClosed():

bp �Nð0; 1:75Þ

d� Beta ð1; 1Þ if d1 ¼ d2
Dirichlet ð1; 1; 1Þ if d1 6¼ d2

�
z
p
i �Nð0; r2zpÞ

rzp � half-Cauchy ð25Þ
N / 1

N

With two chains each consisting of two million itera-

tions (with thinning every 20 iterations to reduce memory

requirements), the simplest models required 12 min on a

computer running Windows 7 (3.4 GHz Intel Core i7

[Intel Corporation, Santa Clara, CA], 16 GB RAM), while

the more complicated models including time variation

required at most 2 h. These relatively fast run times are

attributable to multimark’s parallel processing of

MCMC algorithms written in the C programming lan-

guage (Kernighan and Ritchie 1988). Bayesian multimodel

inference was performed with multimodelClosed() using

the default equal prior model weights, where 300000 iter-

ations for each chain required 2.6 h. The longer run time

for multimodelClosed() owes to the number of models

and the RJMCMC algorithm being written entirely in R.

Models including a positive behavioral response to first

capture accounted for 0.51 of the posterior model weight,

while models including d1=d2 accounted for 0.78 of pos-

terior model weight (Table 3). Model-averaged posterior

modes were N = 35 (highest posterior density interval:

26–101; Fig. 1) for population abundance, p = 0.15

(HPDI: 0.04–0.27) for capture probability, and c = 0.21

(HPDI: 0.07–0.33) for recapture probability. With

d1=d2=0.41 (HPDI: 0.30–0.50) based on the model with

the highest posterior probability, both-sided encounters

were relatively infrequent for these data (1�d1�d2=0.18;
HPDI: 0.00–0.39).

For comparison, I performed conventional left- and

right-sided analyses for these data using markClosed()

and multimodelClosed(). Because models for d and

behavioral response do not apply, the candidate model set

was limited to mod.p=˜1, mod.p=˜time, mod.p=˜h, and

mod.p=˜time+h for these single-sided analyses. As before,

the default “noninformative” priors were used, and the

length and number of chains, burn-in periods, and

adaptive periods were also the same. For the left-side

analysis, the constant detection probability model

accounted for 0.95 of the posterior model weight, while

the individual heterogeneity model accounted for 0.04 of

posterior model weight. Model-averaged posterior modes

were N=32 (HPDI: 24–52) for population abundance and

p=0.12 (HPDI: 0.07–0.19) for capture probability. For the

right-side analysis, the constant detection probability

model accounted for 0.6 of the posterior model weight

and the individual heterogeneity model accounted for

0.39 of posterior model weight. Model-averaged posterior

modes were N=33 (HPDI: 23–85) for population abun-

dance and p=0.12 (HPDI: 0.04–0.19) for capture proba-

bility. These conflicting results demonstrate the

unenviable position one can often find oneself when con-

ducting separate analyses for different mark types from

the same population. One may be tempted to choose the

“most precise” estimate based on the left-side analysis,

but the integrated analysis suggests this would consider-

ably underestimate the uncertainty about N. Choosing the

“more conservative” right-sided results or averaging the

N estimates from the left- and right-sided analyses would

also underestimate the uncertainty about N based on the

integrated analysis. This discrepancy is likely attributable

to the potential behavioral response to first capture iden-

tified by the integrated analysis.

Discussion

I have described some of the key features of multimark, a

new R package for the analysis of capture–recapture data

consisting of a single conventional mark or multiple non-

invasive marks. The package currently includes open popu-

Table 3. Posterior model probabilities (PMM) and abundance

estimates for the bobcat data. Summaries include posterior modes

(N), 95% highest posterior density intervals (HPDI), effective sample

sizes (ESS), and Gelman–Rubin–Brooks diagnostics (GRB) for N. Mod-

els for detection probability (p) included no effects (˜1), behavioral

effects (˜c), time effects (˜time), and individual effects (˜h). Models for

the conditional probability of a left- or right-sided encounter (delta)

included d1=d2 (˜1) and d1 6¼d2 (˜type).

Model PMM N HPDI ESS GRB

p(˜c)delta(˜1) 0.30 38 27–91 38944 1.00

p(˜1)delta(˜1) 0.22 33 26–46 54696 1.00

p(˜h)delta(˜1) 0.16 46 29–114 11685 1.00

p(˜c + h)delta(˜1) 0.09 50 29–145 18544 1.00

p(˜c)delta(˜type) 0.09 38 27–90 35054 1.00

p(˜1)delta(˜type) 0.06 33 26–46 53961 1.00

p(˜h)delta(˜type) 0.05 48 29–113 12099 1.00

p(˜c + h)delta(˜type) 0.03 51 29–146 17276 1.00

p(˜time + h)delta(˜1) 0.00 47 28–115 14414 1.00

p(˜c + time + h)delta(˜1) 0.00 45 28–116 21473 1.00

p(˜time)delta(˜1) 0.00 33 26–45 47781 1.00

p(˜c + time)delta(˜1) 0.00 33 25–78 35169 1.00

p(˜time + h)delta(˜type) 0.00 50 29–118 13882 1.00

p(˜c + time + h)delta(˜type) 0.00 46 27–115 21337 1.00

p(˜time)delta(˜type) 0.00 33 26–45 49425 1.00

p(˜c + time)delta(˜type) 0.00 32 25–78 35360 1.00
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lation CJS and closed population models, with functions

for derived parameters (e.g., /, p) and multimodel infer-

ence. It adds to the growing toolbox of freely available soft-

ware for the analysis of nonspatial (e.g., White and

Burnham 1999; Choquet et al. 2009; Laake et al. 2013;

Laake 2013) and spatial (e.g., Gopalaswamy et al. 2012; Ef-

ford 2015) capture–recapture data, but it is the first to

combine otherwise irreconcilable encounter histories aris-

ing from multiple-mark types. Although initially developed

for integrated analyses of left- and right-sided images for

bilaterally asymmetrical species, the package can be used to

jointly analyze data arising from any two types of marks.

For example, multimark could be used to integrate an

analysis of encounter histories arising from genetic (e.g.,

hair or fecal) and visual (e.g., photograph ID) detections

(sensu Madon et al. 2011; but see Bonner 2013).

multimark is also the first capture–recapture software to

implement generalized Bayesian multimodel inference

based on the RJMCMC algorithm proposed by Barker and

Link (2013).

Relative to previous applications using multiple marks

(Bonner and Holmberg 2013; McClintock et al. 2013),

the relatively fast computation times of the package are

attributable to its use of “semicomplete” data likelihoods

(King et al. 2015), parallel processing, and MCMC algo-

rithms written in C (instead of R). Because parallel pro-

cessing relies on the parallel package (R Core Team

2013), first-time Windows and OS X users can expect a

firewall pop-up dialog box asking if an R process should

accept incoming connections. Memory requirements are

minimized by conditioning on the observed encounter

histories when identifying the feasible set of latent

encounter histories. To facilitate better mixing,

multimark improves the MCMC algorithms proposed

by Bonner and Holmberg (2013) and McClintock et al.

(2013, 2014) by avoiding latent encounter history propos-

als with negative frequencies in a manner that requires no

proposal tuning (see Appendix S1 for details).

Many potentially desirable extensions to multimark

are possible. These include a broader suite of capture–re-
capture models, such as multistate and robust design

models (e.g., Williams et al. 2002). In addition to individ-

ual-level heterogeneity, “random effect” distributions for

temporal or user-specified covariates could also be incor-

porated (e.g., Laake et al. 2013). More general modeling

formulae for d and a would allow additional hypotheses

related to detection to be explored. The package could

also be extended to accommodate >2 mark types and

additional link functions. Although many individual

covariates tend to be difficult (or impossible) to observe

with noninvasive sampling, some (e.g., sex) may be easily

discernible for each mark type. For these cases, it would

be relatively straightforward to extend multimark to

accommodate individual covariates. Other extensions

include spatially explicit models (e.g., Royle 2015) and

allowing for partial overlap in the sampling periods for

each mark type. Practitioners interested in such exten-

sions are encouraged to contact the author.
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